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In this paper an effective meshless and integration-free numerical scheme for solving an
inverse spacewise-dependent heat source problem is proposed. Due to the use of the fun-
damental solution as basis functions, the method leads to a global approximation scheme
in both spatial and time domains. The standard Tikhonov regularization technique with the
generalized cross-validation criterion for choosing the regularization parameter is adopted
for solving the resulting ill-conditioned system of linear algebraic equations. The effective-
ness of the algorithm is illustrated by several numerical examples.
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1. Introduction

In the process of transportation, diffusion and conduction of natural materials, the following heat equation is a suitable
approximation:
ut � Du ¼ f ðx; t; uÞ; ðx; tÞ 2 X� ð0; tmaxÞ; ð1:1Þ
where u represents the state variable, X is a bounded domain in Rd, and the right hand side f denotes physical laws, in our
case source terms. Unfortunately, the characteristics of sources in actual problems are always unknown. These are inverse
problems, and it is well-known that they are generally ill-posed, i.e. the existence, uniqueness and stability of their solutions
are not always guaranteed [1]. In general, a complete recovery of the unknown source is not attainable from practically re-
stricted boundary measurements. If no a priori information is available on the functional form of the unknown variable, the
solution of the estimation problem becomes difficult. Inverse problems are unstable in nature because the unknown solu-
tions have to be determined from indirect observable data which contain measurement errors. The major difficulty in estab-
lishing any numerical algorithm for approximating the solution is the ill-posedness of the problem and the ill-conditioning of
the resulting discretized matrix. For instance, uniqueness and conditional stability results can be found in [2,3]. A number of
techniques have been proposed for solving the inverse source problem, including the boundary element method (BEM) [4],
iterative regularization methods [5–7] and mollification methods [8,9]. Besides, a sequential method [10] and linear least-
squares error method [11] have also been used in solving the inverse source problem. In all of these methods, the partial
differential equation must be discretized. The traditional mesh-dependent finite difference method (FDM) and finite element
method (FEM) require a mesh on the domain to support the solution process, and hence tedious computational time. The
BEM reduces the dimensionality of the problem by one, thus reduces the computational time. However, the main drawback
. All rights reserved.
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of the BEM is the evaluation of the singular integrals at the boundaries, which requires a great amount of computational
effort.

In recent years, meshless methods have attracted great attention in the scientific and engineering community. Meshless
methods emerge as a competitive alternative to mesh-dependent methods, including the radial basis functions (RBF) method
[12,13], the method of fundamental solutions (MFS) [14,15] and the boundary knot method (BKM) [16,17]. These meshless
methods require neither domain discretization as in the FEM and FDM, nor boundary discretization as in the BEM, thus they
improve the computational efficiency and can be easily extended to solve high-order and high-dimensional differential
equations. The MFS has been extensively applied to solve some engineering problems. However, the requirement of an arbi-
trary fictitious boundary outside the physical domain to avoid the singularity of the fundamental solution hinders its prac-
tical applicability. Some improved methods were introduced very recently. A number of authors used a non-singular solution
instead of singular fundamental solution in the MFS, e.g. [16–19]. These methods dealt successfully with many kinds of prob-
lems and eliminated the well-known drawback of ambiguous off-set boundary. Another improved method is called the hy-
brid boundary node method [20,21], which combines the moving least squares interpolation scheme with the hybrid
displacement variational formulation. Recently, Young et al. [22] developed a modified MFS, namely the regularized mesh-
less method, to overcome the drawback of MFS for solving the Laplace equation.

In this paper, we extend the MFS to solve a spacewise-dependent inverse heat source problem under arbitrary geometry.
More recently, Jin and Marin [23] employed the MFS to recover the heat source in steady-state heat conduction problems. In
this reference the problem is reformulated by a fourth-order PDE using the a priori information that the source is harmonic
or satisfies a Helmholtz equation. Yan et al. [24] also applied the MFS to identify a time-dependent heat source. Nevertheless,
publications have not been found so far to use this method for solving the inverse problem of determining the heat source
which is taken to be space-dependent only in the parabolic heat equation.

In this paper, we successfully changed the problem with only one unknown function and then applied the MFS technique
on the resulted equation. Simultaneously, we introduce a time parameter T to avoid the singularities. The numerical results
indicate that the accuracy of numerical solutions is relatively independent of this parameter. It should be noted that the MFS
in conjunction with regularization methods has successfully been applied to inverse problems, such as inverse heat conduc-
tion problems [25,26] and the Cauchy problem for various partial differential equations [27–32].

The MFS discretized system of equations is ill-conditioned and hence it is solved by employing the Tikhonov regulariza-
tion method, while the choice of the regularization parameter is based on the generalized cross-validation (GCV) criterion
[38,42]. Several numerical examples for the inverse source problem are presented to demonstrate the efficacy of the pro-
posed method.

2. Mathematical formulation of the problem

We consider a bounded domain X � Rd; d P 1: Consider the following heat Eq. (1.1) in which the source f ðx; t; uÞ ¼ f ðxÞ
depends on space only and satisfies:
ut ¼ Duþ f ðxÞ; x 2 X; t 2 ð0; tmax�; ð2:1Þ
with the initial condition
uðx;0Þ ¼ 0; x 2 �X; ð2:2Þ
and the boundary condition
uðx; tÞ ¼ hðx; tÞ; x 2 oX; t 2 ð0; tmax�; ð2:3Þ
where hðx;0Þ ¼ 0 for x 2 oX in order to ensure the compatibility of the boundary condition (2.3) with the homogeneous
initial condition (2.2). In this paper, we consider only the case that the initial condition is homogenous, however, using
linearity one can also consider the case of a non-homogenous initial condition. Assume that the source function f ðxÞ is
unknown, and the problem is mathematically underdetermined, such that additional data must be supplied to guarantee
the uniqueness of the solution. In this paper, the additional data can be measured at a given time t0 2 ð0; tmax� in the do-
main X (e.g. [4]),
uðx; t0Þ ¼ gðxÞ; x 2 X; ð2:4Þ
where hðx; t0Þ ¼ gðxÞ for x 2 oX:
The inverse heat source problem is now formulated as follows: Reconstruct the temperature u and the heat source func-

tion f ðxÞ satisfying (2.1)–(2.4).

Remark. Under suitable conditions (see [5,6]), the inverse problem (2.1)–(2.4) has a unique solution.
Let us define the following transformation
vðx; tÞ ¼ uðx; tÞ þ rðxÞ; ð2:5Þ

DrðxÞ ¼ f ðxÞ: ð2:6Þ
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It should be noted that in the transformation (2.6) the function rðxÞ is not uniquely determined. In order to guarantee the
uniqueness, we can assume that rðxÞ ¼ 0 for x 2 oX. Although other formulations may be possible, in this study we inves-
tigate only the aforementioned formulation.

Using the above transformation, the problem (2.1)–(2.4) is transformed into the following problem:
vt ¼ Dv; x 2 X; t 2 ð0; tmax�; ð2:7Þ

vðx;0Þ ¼ rðxÞ; x 2 �X; ð2:8Þ

vðx; tÞ ¼ hðx; tÞ; x 2 oX; t 2 ð0; tmax� ð2:9Þ

vðx; t0Þ ¼ gðxÞ þ rðxÞ; x 2 X: ð2:10Þ
It clearly follows by substituting (2.8) into (2.10) that v satisfies the following problem:
vt � Dv ¼ 0; x 2 X; t 2 ð0; tmax�; ð2:11Þ

vðx; tÞ ¼ hðx; tÞ; x 2 oX; t 2 ð0; tmax� ð2:12Þ

vðx; t0Þ � vðx; 0Þ ¼ gðxÞ; x 2 X: ð2:13Þ
Once v is found, the unknown heat source can be calculated through the transformation (2.6) via numerical differentiation,
i.e.
f ðxÞ ¼ DrðxÞ ¼ Dvðx;0Þ: ð2:14Þ
This implies that the inverse spacewise-dependent heat source problem is mildly ill-posed. The instability of the solution to
problem (2.11)–(2.14) can be shown by considering the following example in 1D case:

Let X ¼ ð0;pÞ and t0 ¼ tmax ¼ 1:
The solution of the problem (2.11)–(2.14) when
h ¼ 0; g ¼ 1� e�n2

n2�� sin nx; � 2 ð0;1Þ;
is given by
vðx; tÞ ¼ � e�n2t

n2�� sin nx:
Therefore, we have
sup
X

fjhj þ jgjg ¼ O
1

n2��

� �
! 0; n!1;
but
sup
X
fjf ðxÞjg ¼ sup

X
fjvxxðx;0Þjg ¼ n� !1; n!1:
This indicates that although the data ðjhj þ jgjÞ tends to zero, the solution f is unbounded. In other words, the inverse space-
wise-dependent heat source problem is ill-posed. It is in general very difficult to obtain a stable numerical solution to the
problem (2.11)–(2.14) due to the ill-posedness of numerical differentiation. In the last decades, some computational meth-
ods have been suggested for numerical differentiation, see e.g. [33] and the extensive references therein.

Suppose that the given noisy data ~g representing the measurement of the exact g satisfies
k~g � gkL2ðXÞ 6 d; ð2:15Þ
where d is a positive constant representing the noise level of the input data. We aim at finding an approximate function
v�ðx; tÞ of vðx; tÞ such that kDv�ðx;0Þ � f ðxÞk converges to zero, as d tends to zero. In the following section, we develop a
numerical method based on the MFS with regularization to solve the problem (2.11)–(2.15).
3. Method of fundamental solutions and regularization

In this section, we describe the numerical scheme for the inverse spacewise-dependent heat source problem, namely the
MFS in conjunction with the Tikhonov regularization (TR). Rules for choosing an appropriate regularization parameter are
also detailed. The MFS is an inherently meshless boundary-type technique for the solution of partial differential equations.
The basic idea of the method is to approximate the solution of the governing partial differential equation by a linear com-
bination of fundamental solutions with singularities, also known as source points, located on a fictitious boundary outsider
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the solution domain. For denseness results of the method for the forward time-dependent heat equation, we refer the reader
to [34,35].

The fundamental solution of Eq. (2.11) is given by
Fðx; tÞ ¼ 1

ð4ptÞ
d
2

e�
jxj2
4t HðtÞ; ð3:1Þ
where HðtÞ is the Heaviside function. Assume that T > tmax is a constant. Then the following time shift function
/ðx; tÞ ¼ Fðx; t þ TÞ; ð3:2Þ
is a non-singular solution of Eq. (2.11) in the domain �X� ½0; tmax�:
Let fðxj; tjÞgm

j¼1 denote the measurement points in the region X� ft0g. The boundary collocation points are chosen as
fðxj; tjÞgmþn

j¼mþ1 on the surface oX� ð0; tmax�. Following the idea of the MFS, we assume that an approximation to the solution
of the problem (2.11)–(2.14) can be expressed by the following linear combination:
v�ðx; tÞ ¼
Xmþn

j¼1

kj/ðx� xj; t � tjÞ; ð3:3Þ
where the basis function /ðx; tÞ is given by Eq. (3.2) and kj are unknown coefficients to be determined. From (3.2) to (3.3), we
can see that the source points are placed at the same spatial positions but at different time levels. It is well-known that the
accuracy of the MFS depends on the choice of the parameter T. However, treating the additional parameter T to be optimized,
would complicate even further the difficult inverse and ill-posed problem under investigation and therefore, this analysis is
deferred to a future work. For different ideas of choosing the source points in MFS for the time-dependent heat equation, see
[24,25,36,37].

For the choice (3.2) of basis function /, the approximated solution v� satisfies the heat Eq. (2.11) automatically. Using the
conditions (2.12) and (2.13), we then obtain the following system of linear equations for the unknown coefficients kj:
Ak ¼ b; ð3:4Þ
where
A ¼
/ðxi � xj; t0 � tjÞ � /ðxi � xj;0� tjÞ

/ðxk � xj; tk � tjÞ

� �
; ð3:5Þ
and
b ¼
~gi

hðxk; tkÞ

� �
; ð3:6Þ
where i ¼ 1;2; . . . ;m; k ¼ mþ 1; . . . ;mþ n; j ¼ 1;2; . . . ;mþ n. The system of linear algebraic Eq. (3.4) cannot be solved by
direct methods, such as the least-squares (LS) method, since such an approach would produce a highly unstable solution
due to the large value of the condition number of the matrix A which increases dramatically as the number of collocation
points increases [14]. Several regularization procedures have been developed to solve such ill-conditioned system, see for
example Hansen [38]. One of the most used regularization technique is the Tikhonov regularization (TR) method [40].
The Tikhonov regularized solution ka for the system of Eq. (3.4) is defined as the solution of the following minimization
problem:
min
k
fjjAk� bjj2 þ ajjkjj2g; ð3:7Þ
where k � k denotes the Euclidean norm and a > 0 is called the regularization parameter. The choice of a suitable value of
the regularization parameter a is crucial for the accuracy of the final numerical solution and is still under intensive re-
search [41]. One parameter choice criterion extensively studied is the discrepancy principle [39], however, it requires a
reliable estimation of the amount of noise d in the data, see Eq. (2.15). Heuristical approaches are preferable in the case
when no a priori information about the noise is available. For the TR method, several heuristical approaches have been
proposed, including the L-curve criterion [38], cross-validation (CV), and generalized cross validation (GCV) [42]. In this
paper, we use the GCV to choose the regularization parameter. In GCV the regularization parameter a is chosen to min-
imize the GCV function
GðaÞ ¼ jjAka � bjj2

ðtraceðInþm � AAIÞÞ2
; a > 0; ð3:8Þ
where AI ¼ ðAtrAþ aInþmÞ�1Atr
:

Denote the regularized solution by ka� , then the approximate solution for the problem (2.11)–(2.14) can be written as
v�aðx; tÞ ¼
Xmþn

j¼1

ka�
j /ðx� xj; t � tjÞ; ð3:9Þ
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r�ðxÞ ¼
Xmþn

j¼1

ka�
j /ðx� xj;0� tjÞ: ð3:10Þ
The solution of problem (2.1)–(2.4) is then given by
u�ðx; tÞ ¼ v�aðx; tÞ � r�ðxÞ; ð3:11Þ
and
f �ðxÞ ¼ Dr�ðxÞ ¼
Xmþn

j¼1

ka�
j D/ðx� xj; 0� tjÞ: ð3:12Þ
4. Numerical experiments

For simplicity, we set tmax ¼ 1 in all the following examples. We use the function rand given in Matlab to generate the
noisy data ~gi ¼ gi þ 2dðrandðiÞ � 0:5Þ, where gi is the exact data and randðiÞ denotes a random number from the uniform dis-
tribution of interval ð0;1Þ. The magnitude d indicates the noise level of measurement data.

Although neither convergence nor estimate proofs are as yet available for the MFS, the numerical results presented in this
section for the inverse heat source problem indicate that the proposed method is feasible and efficient. In order to present
the performance of the MFS in conjunction with the TR method, we first define the root mean square error (RMS) and the
relative root mean square error (RES) as
RMSðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

XNt

i¼1

ðf ðex iÞ � f �ðexiÞÞ2
vuut ; ð4:1Þ

RESðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt
i¼1ðf ðex iÞ � f �ðexiÞÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt

i¼1ðf ðexiÞÞ2
q ; ð4:2Þ
where Nt is the total number of testing points in the domain �X, f ðexiÞ, f �ðexiÞ are, respectively, the exact and approximated
value at these points.The RMS and RES for the heat temperature RESðuÞ and RESðuÞ are also similarly defined.

4.1. One-dimensional examples

Example 1. The exact solution of problem (2.1)–(2.4) with h ¼ 0 and gðxÞ ¼ ð1� e�p2 Þ sinpx is given by
uðx; tÞ ¼ ð1� e�p
2tÞ sin px; ðx; tÞ 2 ½0;1� � ½0;1�; ð4:3Þ

f ðxÞ ¼ p2 sinpx; x 2 ½0;1�: ð4:4Þ
Example 2. We consider an example where there is no analytical solution available. To obtain the data (2.4), we first solve
the following direct problem by using the standard Crank–Nicholson (CN) difference scheme:
ut ¼ uxx þ f ðxÞ; ðx; tÞ 2 ð0;1Þ � ð0;1�;
uð0; tÞ ¼ uð1; tÞ ¼ 0; t 2 ð0;1�;
uðx;0Þ ¼ 0; x 2 ½0;1�;
where
f ðxÞ ¼

0; 0 6 x 6 0:25;
4ðx� 0:25Þ; 0:25 < x 6 0:5;
�4ðx� 0:75Þ; 0:5 < x 6 0:75;
0; 0:75 < x 6 1:

8>>><
>>>: ð4:5Þ
Unless otherwise specified, the parameter T is taken to be 1.5 and t0 is taken to be 1. We also choose typically
m ¼ 11;n ¼ 22;Nt ¼ 21. The inverse heat source problems investigated in this study have been solved using a uniform dis-
tribution of both the collocation points and measurement points.

We consider Example 1 with noise of level d ¼ 0:01 added into the data (2.4). Fig. 1(a) presents the exact and numerical
solutions for the heat source f ðxÞ, obtained using the LS method. It can be seen from this figure that the LS method gives an
unstable solution to the problem. The large oscillations in the solution are due to the contributions from the small singular
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Fig. 1. The numerical solution for the heat source f ðxÞ and its approximation f �ðxÞ obtained using 1% noise added into the data. (a) LS method; (b) TR
method, for Example 1.
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values and the presence of noise in the data. From Fig. 2(a) it can be seen that there are numerous small singular values in the
singular value spectrum of the matrix A. The condition number of the matrix A for this example is approximately 4:18� 1017,
which is enormous compared with the size of the interpolation matrix. Here the condition number is defined as the ratio of
the largest singular value to the smallest singular value.

The numerical results obtained using the TR method and the corresponding GCV function (3.8) are presented in Figs. 1
and 2(b), respectively. Compared with the results by the LS method, the results by TR method are far more accurate. There-
fore, the TR method is indispensable to obtained accurate and stable results for ill-posed problems with noisy data. The
numerical results with various noise levels for Example 1 are shown in Fig. 3. From this figure it can be seen that the results
are quite satisfactory, even with the noise level up to d ¼ 0:05. Furthermore, by comparing Figs. 2(b) and 3, we can see that
the choice of the regularization parameter a� according to the GCV is fully justified.

In order to investigate the influence of the parameter T on the accuracy and stability of the numerical solutions for the
temperature and the heat source, we consider Example 1 with noise data (d ¼ 0:01). In Fig. 4 we present the errors RMS
and RES for Example 1 as functions of the parameter T. It can be seen from this figure that the accuracy of the numerical
results is relatively independent of the parameter T if T < 4. The insensitivity of the solutions to T over fairly large ranges
of the parameters is a favorable feature of MFS because there is no need to search for optimal values of parameters.

Next, we analyze the accuracy of the numerical method proposed with respect to the parameter t0. To do so, we set
T ¼ 1:5 for the inverse problem given by Example 1. Fig. 5 illustrate the errors RMS and RES as functions of t0. From this fig-
ure it can be seen that both errors decrease as the parameter t0 increases and, in addition, these errors do not decrease for
t0 P 0:6.
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Fig. 3. The numerical results for Example 1 with (a) 2% and (b) 5% noise in the data.
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Fig. 4. The accuracy of the numerical solutions for Example 1 with d ¼ 1% with respect to the parameter T.
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The method works equally well for problems for which there is no analytical solution available. To illustrate this, the
numerical results obtained for Example 2 using various amounts of noise added into the data are presented in Fig. 6. From
this figure it can be seen that the numerical results are less accurate than those of Example 1. It is not difficult to see that the
recovered data where x 6 0:2 and x P 0:8 are not accurate indicating that the method employed fails to recover non-smooth
sources. However, taking into consideration the ill-posedness of the problems investigated, the results presented here are
quite satisfactory.

4.2. Two-dimensional examples

For two-dimensional problems, the solution domains under consideration are the following three cases:

Case 1.
X ¼ fðx1; x2Þj0 < x1 < 1;0 < x2 < 1g: ð4:6Þ
Case 2.
X ¼ fðx1; x2Þjx2
1 þ x2

2 < 1g: ð4:7Þ
Case 3. (Complex geometry): The configuration of the complicated case is schematically shown in Fig. 7(c). This case is to
verify the efficiency and effectiveness of the proposed scheme when dealing with problems related to an arbitrary geometry.

For the convenience of comparison and illustration of the accuracy of the method, we consider inverse problems with
analytical solutions as listed in Table 1. The boundary data hðx1; x2; tÞ is computed from the known solutions u. The values
of the temperature gi at measurement points are also obtained from the given solutions. Locations of the internal measure-
ments and boundary collocation points over the domain �X for the test cases are shown in Fig. 7. The location of source points
coincides with that of collocation points. Unless otherwise specified, T ¼ 1:9, t0 ¼ 1 in all cases, and the other parameters did
not significantly improve the accuracy of the numerical results. The total numbers of various boundary collocation, measure-
ment and testing points are given in Table 2.

The proposed numerical scheme is accurate for problems with exact data. For instance, the error distribution for the
numerical heat source obtained using exact data for Example 3 are displayed in Fig. 8. The maximum error is less than
3:9� 10�3 for the LS method and is less than 1:17� 10�5 for TR method, respectively. Thus TR method seems to be capable
of improving the accuracy of the results significantly for exact data.

The error distribution for the numerical heat sources obtained for, using various amounts of noise added into the data, are
presented in Fig. 9. It can be seen from these figures that the numerical results retrieved for the heat source represent good
approximations for their analytical values. Furthermore, the numerical heat sources converge towards their corresponding
exact solutions as the amount of noise decreases. Similar results have been obtained for Example 4 and these are illustrated
in Fig. 10. Hence the MFS, in conjunction with the TR method, provides stable numerical solutions to the 2-D inverse source
problem with smooth geometry.

The values for the accuracy errors RMS(f) and RES(f), the condition number cond(A) of the interpolation matrix A and the
regularization parameter a� as given by the GCV, are presented in Table 3, obtained with the noise level d ¼ 0:02 added into
the data for all the 2-D examples investigated. It can be seen from this table that the error in the numerical solution is main-
tained at a small and comparable level with that in the data.
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Table 1
Test cases for inverse source problems

Example uðx; tÞ f ðxÞ Domain

3 ð1� e�4tÞðcosð2x1Þ þ cosð2x2ÞÞ 4ðcosð2x1Þ þ cosð2x2ÞÞ Case 1
4 t

2 ðx1 þ x2Þ 1
2 ðx1 þ x2Þ Case 2

5 t
2 ðx1 þ x2Þ 1

2 ðx1 þ x2Þ Case 3

Table 2
The setup for the solution of the test cases

m n Nt

Case 1 16 200 121
Case 2 55 180 145
Case 3 13 220 121
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So far, we have investigated the scheme only for inverse problems in a simple geometry. In fact, the proposed method
works equally well for inverse problems in a complicated geometry. To illustrate this, we consider Example 5. The numerical
results for Example 5 are presented in Fig. 11. With up to 2% noise in the data, the numerical results are found to be in good
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Table 3
The accuracy of the numerical results for the test cases with d ¼ 0:02

Example Cond(A) a� RMS(f) RES(f)

3 1:49� 1019 3:98� 10�7 0.0144 0.0639
4 1:79� 1019 1:16� 10�5 0.0213 0.0729
5 1:01� 1019 5:38� 10�5 0.0227 0.0428
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agreement with the exact solution. The accuracy of the numerical results achieved is comparable with that for problems with
smooth geometry, as indicated in Table 3. These results show clearly that the present scheme works equally well for prob-
lems with complicated geometry.

4.3. Three-dimensional example

Three-dimensional heat problems are usually not easy to deal with partly due to the expensive effort in the mesh gen-
eration for mesh-dependent techniques and, more importantly, due to the exponential increasing size of the resulting anal-
ogous discrete equations. This fact is the so-called curse of dimensionality. The following example is intended to verify
numerically the accuracy and efficiency of the present MFS + TR solution for a 3-D problem.

Example 6. Let
X ¼ fðx1; x2; x3Þj0 < xi < 1; i ¼ 1;2;3g: ð4:8Þ
The location of measurement points and collocation points in the domain X are shown in Fig. 12. In this computation, we
take m ¼ 64;n ¼ 760;Nt ¼ 213. The exact solution for Example 6 is given by
uðx1; x2; x3; tÞ ¼ ð1� e�4tÞðcosð2x1Þ þ cosð2x2Þ þ cosð2x3ÞÞ; ð4:9Þ
f ðx1; x2; x3Þ ¼ 4ðcosð2x1Þ þ cosð2x2Þ þ cosð2x3ÞÞ: ð4:10Þ
In this computation, the value of the parameter T is 3.5. The exact and numerical results for the heat source f ðxÞ on the sur-
faces fðx1; x2;0Þ j 0 < x1; x2 < 1g and fðx1; x2;0:5Þ j 0 < x1; x2 < 1g obtained with d ¼ 2% noise added into the data, for the
three-dimensional inverse spacewise-dependent heat source problem as given by Example 6, are shown in Fig. 13(a) and
(b), respectively, while their corresponding error distributions are illustrated in Fig. 13(c) and (d), respectively. It can be seen
from these figures that the numerical results are in good agreement with their corresponding exact solutions. The numerical
results for relative noise level d ¼ ½10�5 � 100;2;5;10�% are reported in Fig. 14. It can be seen from this figure that the MFS
approximation provides very accurate numerical results. Furthermore, both RESðf Þ and RMSðf Þ decrease as the level of noise
d added into the data decreases and RESðf Þ < RMSðf Þ for a fixed d. From Figs. 13 and 14 we can conclude that the MFS + TR
works as well for this 3-D problem as in the previous 2-D cases.

Overall, we can conclude that the proposed method, i.e. the MFS in conjunction with the TR method, is an accurate and
reliable numerical tool for the solution of the inverse heat source problem.
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5. Conclusion

In this paper, we have implemented the MFS to solve a spacewise dependent heat source problem for arbitrary domains
based on the Tikhonov regularization method with the GCV criterion. We successfully changed the equation with only one
unknown function and then applied the MFS technique to the resulted equation. The numerical results show that the MFS is
an accurate and reliable numerical technique for the solution of the inverse heat source problem and the accuracy of numer-
ical solutions is relatively independent of the parameter T. Moreover, the proposed method is readily extendable to solve
higher dimensional problems with complicated and irregular domains.
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